- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dopita, Milan (2)
-
Gaskell, Anthony Arthur (2)
-
Khan, Asif Islam (2)
-
Tasneem, Nujhat (2)
-
Wang, Zheng (2)
-
Antoniadis, Dimitri (1)
-
Chern, Winston (1)
-
Clark, Robert (1)
-
Consiglio, Steven (1)
-
Hoffmann, Michael (1)
-
Hur, Jae (1)
-
Kacher, Josh (1)
-
Karim, Zia (1)
-
Kriegner, Dominik (1)
-
Lim, Sung Kyu (1)
-
Mack, Jerry (1)
-
Mikolajick, Thomas (1)
-
Mukherjee, Niloy (1)
-
Pentapati, Sai Surya (1)
-
Ravichandran, Jayakanth (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO 2 and ZrO 2 ) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO 2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO 2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.more » « less
-
Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam (, Applied Physics Letters)
An official website of the United States government
